YES 0.71 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/Monad.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Monad
  ((ap :: [a  ->  b ->  [a ->  [b]) :: [a  ->  b ->  [a ->  [b])

module Monad where
  import qualified Maybe
import qualified Prelude

  ap :: Monad c => c (b  ->  a ->  c b  ->  c a
ap liftM2 id

  liftM2 :: Monad c => (a  ->  d  ->  b ->  c a  ->  c d  ->  c b
liftM2 f m1 m2 m1 >>= (\x1 ->m2 >>= (\x2 ->return (f x1 x2)))


module Maybe where
  import qualified Monad
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\x2return (f x1 x2)

is transformed to
liftM20 f x1 x2 = return (f x1 x2)

The following Lambda expression
\x1m2 >>= liftM20 f x1

is transformed to
liftM21 m2 f x1 = m2 >>= liftM20 f x1



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule Monad
  ((ap :: [b  ->  a ->  [b ->  [a]) :: [b  ->  a ->  [b ->  [a])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  ap :: Monad a => a (b  ->  c ->  a b  ->  a c
ap liftM2 id

  liftM2 :: Monad b => (a  ->  c  ->  d ->  b a  ->  b c  ->  b d
liftM2 f m1 m2 m1 >>= liftM21 m2 f

  
liftM20 f x1 x2 return (f x1 x2)

  
liftM21 m2 f x1 m2 >>= liftM20 f x1



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Monad
  ((ap :: [b  ->  a ->  [b ->  [a]) :: [b  ->  a ->  [b ->  [a])

module Monad where
  import qualified Maybe
import qualified Prelude

  ap :: Monad c => c (a  ->  b ->  c a  ->  c b
ap liftM2 id

  liftM2 :: Monad c => (d  ->  b  ->  a ->  c d  ->  c b  ->  c a
liftM2 f m1 m2 m1 >>= liftM21 m2 f

  
liftM20 f x1 x2 return (f x1 x2)

  
liftM21 m2 f x1 m2 >>= liftM20 f x1


module Maybe where
  import qualified Monad
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule Monad
  (ap :: [b  ->  a ->  [b ->  [a])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  ap :: Monad a => a (c  ->  b ->  a c  ->  a b
ap liftM2 id

  liftM2 :: Monad a => (d  ->  b  ->  c ->  a d  ->  a b  ->  a c
liftM2 f m1 m2 m1 >>= liftM21 m2 f

  
liftM20 f x1 x2 return (f x1 x2)

  
liftM21 m2 f x1 m2 >>= liftM20 f x1



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs(:(vy60, vy61), vy5, h) → new_psPs(vy61, vy5, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs(:(vy410, vy411), vy30, h, ba) → new_gtGtEs(vy411, vy30, h, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(:(vy30, vy31), vy4, h, ba) → new_gtGtEs0(vy31, vy4, h, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: